DnaK, DnaĴ and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of â ^
نویسندگان
چکیده
The Escherichia coli DnaK heat shock protein has been identified previously as a negative regulator of E. coli heat shock gene expression. We report that two other heat shock proteins, DnaJ and GrpE, are also involved in the negative regulation of heat shock gene expression. Strains carrying defective dnaK, dnaj, or grpE alleles have enhanced synthesis of heat shock proteins at low temperature and fail to shut off the heat shock response after shift to high temperature. These regulatory defects are due to the loss of normal control over the synthesis and stability of CT^^, the alternate RNA polymerase tr-factor required for heat shock gene expression. We conclude that DnaK, DnaJ, and GrpE regulate the concentration of o-̂ .̂ We suggest that the synthesis of heat shock proteins is controlled by a homeostatic mechanism linking the function of heat shock proteins to the concentration of a^^.
منابع مشابه
DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32.
The Escherichia coli DnaK heat shock protein has been identified previously as a negative regulator of E. coli heat shock gene expression. We report that two other heat shock proteins, DnaJ and GrpE, are also involved in the negative regulation of heat shock gene expression. Strains carrying defective dnaK, dnaJ, or grpE alleles have enhanced synthesis of heat shock proteins at low temperature ...
متن کاملTemperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
Heat-shock proteins DnaK, DnaJ, and GrpE (KJE) from Escherichia coli constitute a three-component chaperone system that prevents aggregation of denatured proteins and assists the refolding of proteins in an ATP-dependent manner. We found that the rate of KJE-mediated refolding of heat- and chemically denatured proteins is decreased at high temperatures. The efficiency and reversibility of prote...
متن کاملFormation in vitro of complexes between an abnormal fusion protein and the heat shock proteins from Escherichia coli and yeast mitochondria.
Heat shock proteins (HSPs) of the Hsp70 and GroEL families associate with a variety of cell proteins in vivo. However, the formation of such complexes has not been systematically studied. A 31-kDa fusion protein (CRAG), which contains 12 residues of cro repressor, truncated protein A, and 14 residues of beta-galactosidase, when expressed in Escherichia coli, was found in complexes with DnaK, Gr...
متن کاملRegulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein.
The dnaK operon of Streptomyces coelicolor contains four genes (5'-dnaK-grpE-dnaJ-hspR). The fourth gene encodes a novel heat shock protein, HspR, which appears so far to be unique to the high-G+C actinomycete group of bacteria. HspR binds with high specificity to three inverted repeat sequences in the promoter region of the S. coelicolor dnaK operon, strongly suggesting a direct role for HspR ...
متن کاملThe heat shock response of Escherichia coli.
A large variety of stress conditions including physicochemical factors induce the synthesis of more than 20 heat shock proteins (HSPs). In E. coli, the heat shock response to temperature upshift from 30 to 42 degrees C consists of the rapid induction of these HSPs, followed by an adaptation period where the rate of HSP synthesis decreases to reach a new steady-state level. Major HSPs are molecu...
متن کامل